SOLUTIONS TO EXAM 3, MATH 10560

1. Calculate

$$
\lim _{n \rightarrow \infty} \frac{(\ln n)^{2}}{n}
$$

Solution: Use L'hospital rule:

$$
\lim _{x \rightarrow \infty} \frac{(\ln x)^{2}}{x}=\lim _{x \rightarrow \infty} \frac{\left((\ln x)^{2}\right)^{\prime}}{x^{\prime}}=\lim _{n \rightarrow \infty} \frac{2 \frac{1}{x} \ln x}{1}=\lim _{x \rightarrow \infty} \frac{(2 \ln x)^{\prime}}{x^{\prime}}=\lim _{x \rightarrow \infty} \frac{\frac{2}{x}}{1}=0 .
$$

2. Find $\sum_{n=1}^{\infty} \frac{2^{2 n}}{3 \cdot 5^{n-1}}$.

Solution:

$$
\sum_{n=1}^{\infty} \frac{2^{2 n}}{3 \cdot 5^{n-1}}=\sum_{n=1}^{\infty} \frac{4^{n}}{3 \cdot 5^{n-1}}=\sum_{n=1}^{\infty} \frac{4 \cdot 4^{n-1}}{3 \cdot 5^{n-1}}=\frac{4}{3} \sum_{n=1}^{\infty}\left(\frac{4}{5}\right)^{n-1}=\frac{4}{3} \frac{1}{1-\frac{4}{5}}=\frac{20}{3}
$$

3. Discuss the convergence of the series

$$
\sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}
$$

Solution: It converges conditionally. It's an alternating series and $b_{n}=\frac{1}{\sqrt{n}}$. Since b_{n} is decreasing and the limit of b_{n} is zero, the alternating series converges by the Alternating Series Test. But the series $\sum_{n=2}^{\infty}\left|\frac{(-1)^{n+1}}{\sqrt{n}}\right|=\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}}$ diverges since it's a p series and $p=\frac{1}{2}<1$.
4. Use Comparison Tests to determine which one of the following series is divergent.

Solution: (a) $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}+1}$ converges by comparison with $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$, a p-series with $p=$ $\frac{3}{2}>1$.
(b) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+8}$ converges by comparison with $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$, a p-series with $p=2>1$.
(c) $\sum_{n=1}^{\infty} \frac{n^{2}-1}{n^{3}+100}$ diverges by limit comparison with $\sum_{n=1}^{\infty} \frac{1}{n}$, a p-series with $p=1$.
(d) $\sum_{n=1}^{\infty} 7\left(\frac{5}{6}\right)^{n}$ converges since it is a geometric series with $r=\frac{5}{6}<1$.
(e) $\sum_{n=1}^{\infty} \frac{n}{n+1}\left(\frac{1}{2}\right)^{n}$ converges by comparison with $\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}$, a geometric series with $r=\frac{1}{2}<1$.
5. Which series below is the MacLaurin series (Taylor series centered at 0) for $\frac{x^{2}}{1+x}$?

Solution:

$$
\frac{x^{2}}{1+x}=\frac{x^{2}}{1-(-x)}=x^{2} \sum_{n=0}^{\infty}(-x)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{n+2}
$$

6. Find the degree 3 MacLaurin polynomial (Taylor polynomial centered at 0) for the function

$$
\frac{e^{x}}{1-x^{2}}
$$

Solution: $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}, \frac{1}{1-x^{2}}=\sum_{n=0}^{\infty} x^{2 n}$. Thus $\frac{e^{x}}{1-x^{2}}=e^{x} \cdot \frac{1}{1-x^{2}}=\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\ldots\right)\left(1+x^{2}+\ldots\right)=1+x+\frac{3}{2} x^{2}+\frac{7}{6} x^{3}+\cdots$.
7. Which series below is a power series for $\cos (\sqrt{x})$?

Solution: Since $\cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$, we have

$$
\cos (\sqrt{x})=\sum_{n=0}^{\infty}(-1)^{n} \frac{(\sqrt{n})^{2 n}}{(2 n)!}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{(2 n)!}
$$

8. Calculate

$$
\lim _{x \rightarrow 0} \frac{\sin \left(x^{3}\right)-x^{3}}{x^{9}}
$$

Solution: Since $\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$, we have

$$
\sin \left(x^{3}\right)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{6 n+3}}{(2 n+1)!}
$$

and

$$
\lim _{x \rightarrow 0} \frac{\sin \left(x^{3}\right)-x^{3}}{x^{9}}=\lim _{x \rightarrow 0} \frac{x^{3}-\frac{x^{9}}{3!}+\frac{x^{15}}{5!}-\cdots-x^{3}}{x^{9}}=\lim _{x \rightarrow 0} \frac{-\frac{x^{9}}{3!}+\cdots}{x^{9}}=-\frac{1}{6}
$$

9. Does the series

$$
\sum_{n=1}^{\infty} \frac{(n!)^{n}}{n^{2 n}}
$$

converge or diverge? Show your reasoning and state clearly any theorems or tests you are using.

Solution: Let $a_{n}=\frac{(n!)^{n}}{n^{2 n}}=\left(\frac{n!}{n^{2}}\right)^{n}$. Since

$$
\lim _{n \rightarrow \infty} \frac{n!}{n^{2}}=\lim _{n \rightarrow \infty} \frac{n-1}{n} \cdot(n-2)!=\infty
$$

we have

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(\frac{n!}{n^{2}}\right)^{n}=\infty
$$

Hence $\lim _{n \rightarrow \infty} a_{n} \neq 0$. By the Test for Divergence, the series is divergent.
10. Use the Integral Test to discuss whether the series $\sum_{n=1}^{\infty} \frac{(\ln n)^{2}}{n}$ converges.

Solution: Let $f(x)=\frac{(\ln x)^{2}}{x}$. It is continuous and positive when $x>1$. Note

$$
f^{\prime}(x)=\frac{2 \ln x-(\ln x)^{2}}{x^{2}}=\frac{\ln x}{x^{2}}(2-\ln x)
$$

Then $f^{\prime}(x)<0$ and hence $f(x)$ is decreasing for $x>e^{2}$. Therefore, we can use the Integral Test. Next,

$$
\int_{1}^{\infty} \frac{(\ln x)^{2}}{x} d x=\lim _{t \rightarrow \infty} \int_{1}^{t}(\ln x)^{2} d(\ln x)=\left.\lim _{t \rightarrow \infty} \frac{(\ln x)^{3}}{3}\right|_{1} ^{t}=\lim _{t \rightarrow \infty} \frac{(\ln t)^{3}}{3}=\infty
$$

Hence the improper integral $\int_{1}^{\infty} \frac{(\ln x)^{2}}{x} d x$ is divergent. By the Integral Test, the series $\sum_{n=1}^{\infty} \frac{(\ln n)^{2}}{n}$ diverges.
11. Find the radius of convergence and interval of convergence of the power series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}(x-3)^{n}
$$

Solution: Set $a_{n}=\frac{(-1)^{n}}{\sqrt{n}}(x-3)^{n}$. Using the Ratio Text,

$$
\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{\sqrt{n+1}}|x-3|=|x-3|<1
$$

Hence, the radius of convergence is 1 , and from $|x-3|<1$ we get $2<x<4$. For the end points, when $x=2$, the series is $\sum_{n=1}^{\infty} \frac{(-1)^{n}(-1)^{n}}{\sqrt{n}}=\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ which is divergent since it is
a p-series with $p=\frac{1}{2}<1$; when $x=4$, the series is $\sum_{n=1}^{\infty} \frac{(-1)^{n}(1)^{n}}{\sqrt{n}}$ which is convergent since it's an alternating series, and $b_{n}=\frac{1}{\sqrt{n}}$ are decreasing and $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0$. Hence, the interval of convergence is $2<x \leq 4$.
12. (a) Show that

$$
\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}=\frac{1}{1+x^{2}}
$$

provided that $|x|<1$.
(b) Find

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)(\sqrt{3})^{2 n+1}}
$$

Solution: (a) Since $|x|<1$, we have $\left|x^{2}\right|<1$. Hence

$$
\frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}
$$

(b) Integrate both the left and right hands of (a) to get

$$
\begin{aligned}
& \int \sum_{n=0}^{\infty}(-1)^{n} x^{2 n} d x=\int \frac{1}{1+x^{2}} d x \\
\Rightarrow & \sum_{n=0}^{\infty} \int(-1)^{n} x^{2 n} d x=\int \frac{1}{1+x^{2}} d x \\
\Rightarrow & \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}=\arctan x+C
\end{aligned}
$$

Letting $x=0$, we have $C=0$. Hence, we have

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}=\arctan x
$$

Let $x=\frac{1}{\sqrt{3}}$. We get

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)(\sqrt{3})^{2 n+1}}=\arctan \frac{1}{\sqrt{3}}=\frac{\pi}{6} .
$$

